基于Python Opencv的数独解析程序
主程序脚本,只是个调用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from os import walk
from subprocess import call
import os
for (dirpath, dirnames, filenames) in walk("data/src"):
for filename in filenames:
fullpath = dirpath + "/" + filename
outFileName = filename+"-out.png"
outFullPath = "./data/build/"+ outFileName
pyfile1 = os.getcwd() + "/sudoku-preprocess.py"
pyfile2 = os.getcwd() + "/sudoku-split.py"
call(["python",pyfile1, fullpath, outFullPath])
call(["python",pyfile2, outFullPath])
print(fullpath)
数据目录
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
yixiaoyang@[/devel/git/github/OpencvTutorial/sudoku] % tree ./data
./data
├── build
│ ├── sudoku1.jpg-out.png
│ ├── sudoku1.jpg-out.png-contours.png
│ ├── sudoku3.jpg-out.png
│ ├── sudoku3.jpg-out.png-contours.png
│ ├── sudoku4.jpg-out.png
│ └── sudoku4.jpg-out.png-contours.png
├── cut
├── src
│ ├── sudoku1.jpg
│ ├── sudoku2.jpg
│ ├── sudoku3.jpg
│ └── sudoku4.jpg
├── testset
└── trainset
分析和分割数独区域
- 平滑:消除部分噪声
- 适当膨胀腐蚀:消除间隙
- canny:得到轮廓
- 提取轮廓后,拟合外接多边形,面积最大的那个矩形区域就认为是数独区域
- 提取数独区域,仿射,拉伸后简单消除畸变将图形变“正”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
# encoding: utf-8
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt
import sys
import os
if len(sys.argv) < 3:
print("[ERR] parameter error. try to run 'python xxxx.py src dst'")
exit()
src_file = sys.argv[1]
dst_file = sys.argv[2]
class Config:
debug = False
src = "sudoku3.jpg"
dst = "1-output.png"
# 最大所方长宽值
max_size = 1024
min_area = 0.05
min_contours = 8
threshold_thresh = 110
epsilon_start = 50
epsilon_step = 10
hough_rho = 100
hough_theta = (1*np.pi)/180
'''
@return [top-left, top-right, bottom-right, bottom-left]
'''
def order_points(pts):
# initialzie a list of coordinates that will be ordered
# such that the first entry in the list is the top-left,
# the second entry is the top-right, the third is the
# bottom-right, and the fourth is the bottom-left
rect = np.zeros((4, 2), dtype="float32")
# the top-left point will have the smallest sum, whereas
# the bottom-right point will have the largest sum
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# now, compute the difference between the points, the
# top-right point will have the smallest difference,
# whereas the bottom-left will have the largest difference
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
# return the ordered coordinates
return rect
def point_distance(a,b):
return int(np.sqrt(np.sum(np.square(a - b))))
'''
@func 寻找面积最大的最大包络矩形区域
'''
def max_contour_idx(contours):
max_area = 0
max_idx = 0
if len(contours) == 0:
return -1
for idx,c in enumerate(contours):
if len(c) < Config.min_contours:
continue
curArea = cv2.contourArea(c)
#print curArea
if curArea > max_area:
max_area = curArea
max_idx = idx
return max_idx
def image_resize(img):
srcWidth, srcHeight, channels = image.shape
max_size = max(srcWidth, srcHeight)
if max_size < Config.max_size:
return img
resize_n = (max_size-Config.max_size/2)/Config.max_size +1
return cv2.resize(img,(int(srcHeight/resize_n), int(srcWidth/resize_n)),interpolation=cv2.INTER_AREA )
if not os.path.exists(src_file) :
print("[ERR] src file %s not exised!"%src_file)
exit()
image = cv2.imread(src_file)
image = image_resize(image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 高斯平滑,消除噪声
binary = cv2.GaussianBlur(gray,(5,5),0)
# adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst
#binary = cv2.adaptiveThreshold(binary, 255, adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C, thresholdType=cv2.THRESH_BINARY, blockSize=5, C=3)
#_, binary = cv2.threshold(binary, thresh=20, maxval=255, type=cv2.THRESH_BINARY)
#cv2.imwrite("1-threshold.png", binary, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
# canny提取轮廓
binary = cv2.Canny(binary, threshold1=0, threshold2=128, apertureSize = 3)
#cv2.imwrite("3-canny.png", binary, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
# 提取轮廓后,拟合外接多边形(矩形)
_,contours,_ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
#print("len(contours)=%d"%(len(contours)))
if Config.debug:
image_copy = image
for idx,c in enumerate(contours):
cv2.drawContours(image_copy, contours, idx, (255, 0, 255))
#cv2.imwrite("contours.png", image_copy, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
max_idx = max_contour_idx(contours)
if max_idx >= 0:
c = contours[max_idx]
epsilon = Config.epsilon_start
# 拟合外接最小矩形,拟合的最小长度为epsilon像素
# Python: cv2.approxPolyDP(curve, epsilon, closed[, approxCurve]) → approxCurve
# approxCurve – Result of the approximation. The type should match the type of the input curve.
# In case of C interface the approximated curve is stored in the memory storage
# and pointer to it is returned.
# epsilon – Parameter specifying the approximation accuracy. This is the maximum distance between
# the original curve and its approximation.
# closed – If true, the approximated curve is closed (its first and last vertices are connected).
# Otherwise, it is not closed.
approx = cv2.approxPolyDP(c,epsilon,True)
#print("max_contour_idx,epsilon,len(approx),len(c)=%d,%d,%d,%d"%(max_idx,epsilon,len(approx),len(c)))
if (len(approx) == 4):
#approx = approx[0:4,]
approx = approx.reshape((4, 2))
# 点重排序, [top-left, top-right, bottom-right, bottom-left]
src_rect = order_points(approx)
cv2.drawContours(image, c, -1, (0,255,255),1)
cv2.line(image, (src_rect[0][0],src_rect[0][1]),(src_rect[1][0],src_rect[1][1]),color=(100,255,100))
cv2.line(image, (src_rect[2][0],src_rect[2][1]),(src_rect[1][0],src_rect[1][1]),color=(100,255,100))
cv2.line(image, (src_rect[2][0],src_rect[2][1]),(src_rect[3][0],src_rect[3][1]),color=(100,255,100))
cv2.line(image, (src_rect[0][0],src_rect[0][1]),(src_rect[3][0],src_rect[3][1]),color=(100,255,100))
# 获取最小矩形包络
rect = cv2.minAreaRect(approx)
box = cv2.boxPoints(rect)
box = np.int0(box)
box = box.reshape(4,2)
box = order_points(box)
w,h = point_distance(box[0],box[1]), \
point_distance(box[1],box[2])
# 透视变换
dst_rect = np.array([
[0, 0],
[w - 1, 0],
[w - 1, h - 1],
[0, h - 1]],
dtype="float32")
M = cv2.getPerspectiveTransform(src_rect, dst_rect)
# 获取变换后的图像
warped = cv2.warpPerspective(gray, M, (w, h))
cv2.imwrite(dst_file, warped, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
exit()
分割数字区域和块区域
- 膨胀腐蚀:消除间隙
- 寻找外形轮廓,使用形态学梯度:膨胀图与腐蚀图之差,留下的就是轮廓。这一步跟canny的效果区别需要对比一下
- 二值阈值:上一步得到的值已经可以比较好的消除非边缘区域以及噪声,取一个适当的阈值就可以把数字和方格轮廓二值化提取出来
- 再次轮廓检测。利用轮廓tree尽可能分析出已有的数组grid。用面积、拟合矩形的长宽比例等条件筛选出需要的区域
- 猜测计算数独grid的行数、列数、行宽、列宽、行线宽、列线宽等值。方法是在以筛选出的格子矩形区域中分析众数的行数、列数、行宽、列宽,将其作为猜测值,算出行列数
- 分析出没有提取出来的格子(虚拟格子)。方法是根据其相邻的已分析出的方格坐标推测虚拟格的坐标和长宽直到所有格子分析出来
- 根据所有格子的位置将其从图片中切割出来,简单处理下就可以用于OCR的机器学习识别数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#!/usr/bin/env python
# encoding: utf-8
import cv2
import numpy as np
from scipy.ndimage import label
from scipy import stats
import statistics
import sys
import os
if len(sys.argv) < 2:
print("[ERR] parameter error. try to run 'python xxxx.py src'")
exit()
src_file = sys.argv[1]
src_files = src_file.split("/")
src_filename = src_files[-1]
class Config:
debug = True
src = "1-output3.png"
dst = "2-output.png"
# 最大所方长宽值
max_size = 1024
# 最少5x5=25个像素点
min_area = 9
epsilon_start = 50
epsilon_step = 10
# 块长宽比最大差值
max_rectx = 0.25
# 默认猜测格子线宽度4px
guess_line_w = 4
def image_resize(img):
srcWidth, srcHeight, channels = image.shape
max_size = max(srcWidth, srcHeight)
if max_size < Config.max_size:
return img
resize_n = (max_size-Config.max_size/2)/Config.max_size +1
return cv2.resize(img,(int(srcHeight/resize_n), int(srcWidth/resize_n)),interpolation=cv2.INTER_AREA )
if not os.path.exists(src_file) :
print("[ERR] src file %s not exised!"%src_file)
exit()
image = cv2.imread(src_file)
image = image_resize(image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 高斯平滑,消除噪声
binary = gray
#binary = cv2.medianBlur(gray,5)
#binary = cv2.GaussianBlur(gray,(5,5),0)
#cv2.imwrite("2-0-gaussian.png", binary, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
# 寻找外形轮廓,使用形态学梯度:膨胀图与腐蚀图之差,留下的就是轮廓
element = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3), (1, 1))
binary = cv2.morphologyEx(binary, cv2.MORPH_GRADIENT, element)
#cv2.imwrite("2-0-morphologyEx.png", binary)
_, binary = cv2.threshold(binary, thresh=15, maxval=255, type=cv2.THRESH_BINARY)
#cv2.imwrite("2-1-threshold.png", binary, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
kernel = np.ones((3, 3), np.uint8)
binary = cv2.dilate(binary, kernel, iterations=1)
#cv2.imwrite("2-1-dilate.png", binary, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
# canny提取轮廓
binary = cv2.Canny(binary, threshold1=0, threshold2=128, apertureSize = 3)
#cv2.imwrite("2-3-canny.png", binary, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
_, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
#_, contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
#print ("len(contours)=%d" % len(contours))
parent_null_count = 0
origin_copy = image
epsilon = Config.epsilon_start
areas = []
for idx, h in enumerate(hierarchy[0]):
nxt, pre, child, parent = h
if parent == -1:
c = contours[idx]
# 包含点集最小面积的矩形,,这个矩形是可以有偏转角度的,可以与图像的边界不平行, 输出是矩形的四个点坐标
#rect = cv2.minAreaRect(c)
#box = cv2.boxPoints(rect)
x,y,w,h = cv2.boundingRect(c)
box = [x,y],[x+w,y],[x+w,y+h],[x,y+h]
box = np.int0(box)
curArea = cv2.contourArea(box)
distance1 = cv2.norm(box[0],box[1])
distance2 = cv2.norm(box[1],box[2])
if min(distance1,distance2) < 4:
cv2.drawContours(origin_copy, c, -1, (0, 255, 0), 1)
#print (parent_null_count, nxt, pre, child, parent, curArea)
else:
ratio = distance1/distance2
if np.abs(ratio-1.0) < Config.max_rectx:
parent_null_count += 1
cv2.drawContours(origin_copy,[box],0,(255,0,255),1)
#cv2.putText(origin_copy,"%d"%idx, (x+10,y+10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
areas.append((idx,curArea,x,y,w,h))
else:
pass
#cv2.drawContours(origin_copy,[box],0,(0, 255, 0), 1)
#print (parent_null_count,idx, nxt, pre, child, parent, curArea,x)
if False:
cv2.imshow('contours',origin_copy)
k =cv2.waitKey(0)
if k == 27:
break
#cv2.imwrite("2-4-contours.png", origin_copy, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
areas = np.array(areas)
mode_result = stats.mode(areas)
_, marea, mx, my, mw, mh = mode_result.mode[0]
#print(marea, mx, my, mw, mh)
min_area = marea*0.75
area_idx = np.where(areas[:,1] >= min_area)
# areas是已经找到的合格矩形的集合
areas = areas[area_idx]
def guess_grid_wh(areas, cur_col, another_col, area_col, cur_mVal, contour_wh):
area_idx = np.where((areas[:,cur_col] == cur_mVal))
select_areas = areas[area_idx]
sort_idx = np.argsort(select_areas[:,3])
select_areas = select_areas[sort_idx]
contour_gaps = []
for idx in range(len(select_areas)-1):
contour_gaps.append(np.abs(select_areas[idx][another_col]-select_areas[idx+1][another_col]))
mode_result = stats.mode(contour_gaps)
if(mode_result.mode > 0):
mode_gap = mode_result.mode[0]
# 得到的gap可能是相邻的两个块,有可能是中间间隔了n个的块,因此需要先推算这两个块间隔了多少个块
steps = (int)(mode_gap/(contour_wh+Config.guess_line_w)+0.5)
return (mode_gap/steps+1)
guess_grid_h = guess_grid_wh(areas, 2, 3, 1, mx, mh)
guess_grid_w = guess_grid_wh(areas, 3, 2, 1, my, mw)
# rows, columns and channels
srcRows, srcCols, channels = image.shape
guess_grid_cols, guess_grid_rows = (int)(srcCols/guess_grid_w+0.5), (int)(srcRows/guess_grid_h+0.5)
guess_line_xw = int((srcCols - guess_grid_w*guess_grid_cols)/guess_grid_cols)+1
guess_line_yw = int((srcRows - guess_grid_h*guess_grid_rows)/guess_grid_rows)+1
print("file:%s"%(src_file), "cols, rows, w, h=",guess_grid_cols, guess_grid_rows, guess_line_xw, guess_line_yw)
# 开始分区
anchor_x_diff = guess_grid_w*0.4
anchor_y_diff = guess_grid_h*0.4
content_areas = {}
for row in range(guess_grid_rows):
anchor_y = int(guess_grid_h*row)
for col in range(guess_grid_cols):
anchor_x = int(guess_grid_w*col)
# 查找在(anchor_x, anchor_y)附近的块,如果没有,则构造一个虚拟块, _, marea, mx, my, mw, mh
area_idx = np.where((np.abs(areas[:,2]-anchor_x) < anchor_x_diff) & (np.abs(areas[:,3]-anchor_y) < anchor_y_diff))
area = areas[area_idx]
#print(area)
if len(area) > 0:
content_areas[row,col] = area[0]
#print(row, col, area[0])
#print(content_areas)
# 构造虚拟块
for row in range(guess_grid_rows):
for col in range(guess_grid_cols):
rect = 0,0,0,0
if (row,col) in content_areas:
area = content_areas[row,col]
rect = int(area[2]), int(area[3]), int(area[4]), int(area[5])
#print(row, col, area)
else:
guess_x, guess_y, guess_w, guess_h, x_cnt, y_cnt = 0, 0, 0, 0, 0, 0
guess_x = col * guess_grid_w
guess_y = row * guess_grid_h
guess_w = int(col*guess_grid_w)-1
guess_h = int(row*guess_grid_h)-1
# 位置图:
# 1
# |
# 2 - O - 4
# |
# 8
position = 0
if (row,col-1) in content_areas:
position += 2
if (row,col+1) in content_areas:
position += 4
if (row-1,col) in content_areas:
position += 1
if (row+1,col) in content_areas:
position += 8
# 0 1 2 3 4 5
# idx, area, x, y, w, h
area1 = content_areas.get((row-1,col))
area2 = content_areas.get((row,col-1))
area4 = content_areas.get((row,col+1))
area8 = content_areas.get((row+1,col))
if position == 0:
pass
if position == 1:
guess_x = area1[2]
guess_y = area1[3] + guess_grid_h + guess_line_yw
guess_w = area1[4]
guess_h = area1[5]
if position == 2:
guess_x = area2[2] + guess_grid_w + guess_line_xw
guess_y = area2[3]
guess_w = area2[4]
guess_h = area2[5]
if position == 3:
guess_x = area1[2]
guess_y = area2[3]
guess_w = int(statistics.mean([area2[4],area1[4]]))
guess_h = int(statistics.mean([area2[5],area1[5]]))
if position == 4:
guess_x = area4[2] - guess_grid_w - guess_line_xw
guess_y = area4[3]
guess_w = area4[4]
guess_h = area4[5]
if position == 5:
guess_x = area1[2]
guess_y = area4[3]
guess_w = int(statistics.mean([area4[4],area1[4]]))
guess_h = int(statistics.mean([area4[5],area1[5]]))
if position == 6:
guess_x = int(statistics.mean([area2[2],area4[2]]))
guess_y = int(statistics.mean([area2[3],area4[3]]))
guess_w = int(statistics.mean([area2[4],area4[4]]))
guess_h = int(statistics.mean([area2[5],area4[5]]))
if position == 7:
guess_x = int(statistics.mean([area1[2],area2[2],area4[2]]))
guess_y = int(statistics.mean([area2[3],area4[3]]))
guess_w = int(statistics.mean([area1[4],area2[4],area4[4]]))
guess_h = int(statistics.mean([area1[5],area2[5],area4[5]]))
if position == 8:
guess_x = area8[2]
guess_y = area8[3] - guess_grid_h - guess_line_yw
guess_w = area8[4]
guess_h = area8[5]
if position == 9:
guess_x = int(statistics.mean([area1[2],area8[2]]))
guess_y = int(statistics.mean([area1[3],area8[3]]))
guess_w = int(statistics.mean([area1[4],area8[4]]))
guess_h = int(statistics.mean([area1[5],area8[5]]))
if position == 10:
guess_x = area8[2]
guess_y = area2[3]
guess_w = int(statistics.mean([area8[4],area2[4]]))
guess_h = int(statistics.mean([area8[5],area2[5]]))
if position == 11:
guess_x = int(statistics.mean([area1[2],area8[2]]))
guess_y = int(statistics.mean([area1[3],area2[3],area8[3]]))
guess_w = int(statistics.mean([area1[4],area2[4],area8[4]]))
guess_h = int(statistics.mean([area1[5],area2[5],area8[5]]))
if position == 12:
guess_x = area8[2]
guess_y = area4[3]
guess_w = int(statistics.mean([area8[4],area4[4]]))
guess_h = int(statistics.mean([area8[5],area4[5]]))
if position == 13:
guess_x = int(statistics.mean([area1[2],area8[2]]))
guess_y = int(statistics.mean([area1[3],area4[3],area8[3]]))
guess_w = int(statistics.mean([area1[4],area4[4],area8[4]]))
guess_h = int(statistics.mean([area1[5],area4[5],area8[5]]))
if position == 14:
guess_x = int(statistics.mean([area8[2],area2[2],area4[2]]))
guess_y = int(statistics.mean([area2[3],area4[3]]))
guess_w = int(statistics.mean([area8[4],area2[4],area4[4]]))
guess_h = int(statistics.mean([area8[5],area2[5],area4[5]]))
if position == 15:
guess_x = int(statistics.mean([area1[2],area2[2],area4[2],area8[2]]))
guess_y = int(statistics.mean([area1[3],area2[3],area4[3],area8[3]]))
guess_w = int(statistics.mean([area1[4],area2[4],area4[4],area8[4]]))
guess_h = int(statistics.mean([area1[5],area2[5],area4[5],area8[5]]))
rect = int(guess_x), int(guess_y), int(guess_w), int(guess_h)
content_areas[row,col] = (0, guess_w*guess_h, guess_x, guess_y, guess_w, guess_h)
pt1 = (int(guess_x), int(guess_y))
pt2 = (int(guess_x+guess_w), int(guess_y+guess_h))
cv2.rectangle(origin_copy,pt1,pt2,(256,128,0),1)
x,y,w,h = rect
cut_img = gray[y:y+h, x:x+w]
cut_img = cv2.resize(cut_img,(32,32))
#_, cut_img = cv2.threshold(cut_img, thresh=64, maxval=255, type=cv2.THRESH_BINARY)
cut_img = cv2.adaptiveThreshold(cut_img, 255, adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C, thresholdType=cv2.THRESH_BINARY, blockSize=5, C=3)
cv2.imwrite("./data/cut/"+src_filename+"-%d-%d.png"%(row,col), cut_img, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
cv2.imwrite("./data/build/"+src_filename+"-contours.png", origin_copy, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
数字识别
(待完成)
解数独
(待完成)